Esercizi svolti

 

Studiare la funzione f(x)= e -x x 2 -3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI cacaWG4bGaaiykaiabg2da9maalaaabaGaamyzamaaCaaaleqabaGa aiylaiaadIhaaaaakeaacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaai ylaiaaiodaaaaaaa@407A@  e darne una rappresentazione grafica.

 

Dominio

Il dominio di tale funzione è D={ x/  x 2 -30 }={ ± 3 }. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9maacmaabaGaamiEaiabgIGiolabgYriclaac+cacaqGGaGaaeiE amaaCaaaleqabaGaaeOmaaaakiaab2cacaqGZaGaeyiyIKRaaeimaa Gaay5Eaiaaw2haaiabg2da9iabgYriclabgkHiTmaacmaabaGaeyyS ae7aaOaaaeaacaaIZaaaleqaaaGccaGL7bGaayzFaaGaaiOlaaaa@4E50@

 

Studio del segno. Intersezioni con gli assi.

Poichè xD: e x >0 ,  f(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaae iEaiabgIGiolaadseacaGG6aGaaGPaVlaaykW7caWGLbWaaWbaaSqa beaacqGHsislcaWG4baaaOGaeyOpa4JaaGimaiaabccacaGGSaGaae iiaiaabccacaWGMbGaaeikaiaadIhacaqGPaaaaa@4887@  risulta positiva per   x 2 3>0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiiaiaadI hadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIZaGaeyOpa4JaaGim aiaacYcaaaa@3CA5@

cioè per x] , 3 [] 3 ,+ [ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabM gacaqGVbGaaei6aiaabccacaqGWbGaaeyzaiaabkhacaqGGaGaamiE aiabgIGiopaajmcabaGaeyOeI0IaeyOhIuQaaiilaiabgkHiTmaaka aabaGaaG4maaWcbeaaaOGaayzxaiaawUfaaiabgQIiipaajmcabaWa aOaaaeaacaaIZaaaleqaaOGaaiilaiabgUcaRiabg6HiLcGaayzxai aawUfaaaaa@4F4E@ .

Si noti che, essendo f(x)0 xD MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI cacaWG4bGaaiykaiabgcMi5kaaicdacaqGGaGaeyiaIiIaaeiEaiab gIGiolaadseaaaa@4073@ , non ci sono intersezioni con l’asse delle ascisse.

Ricerchiamo le eventuali intersezioni con l’asse delle ordinate studiando il seguente sistema:

{ x=0 y= e x x 2 3                                { x=0 y= 1 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe qaaiaadIhacqGH9aqpcaaIWaaabaGaamyEaiabg2da9maalaaabaGa amyzamaaCaaaleqabaGaeyOeI0IaamiEaaaaaOqaaiaadIhadaahaa WcbeqaaiaaikdaaaGccqGHsislcaaIZaaaaaaacaGL7baacaqGGaGa aeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccaca qGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacqGHshI3caqGGaGa aeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccaca qGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaWaaiqaaqaa beqaaiaadIhacqGH9aqpcaaIWaaabaGaamyEaiabg2da9iabgkHiTm aalaaabaGaaGymaaqaaiaaiodaaaaaaiaawUhaaaaa@60FE@

Quindi f(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI cacaWG4bGaaiykaaaa@3937@  interseca l’asse delle ordinate nel punto ( 0; 1 3 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIWaGaai4oaiabgkHiTmaalaaabaGaaGymaaqaaiaaiodaaaaacaGL OaGaayzkaaGaaiOlaaaa@3C1F@

 

Asintoti.

lim x+ e x x 2 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci GGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcqGHRaWkcqGHEisP aeqaaOWaaSaaaeaacaWGLbWaaWbaaSqabeaacqGHsislcaWG4baaaa GcbaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiodaaaGa eyypa0JaaGimaaaa@46BB@     MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbyaqa aaaaaaaaWdbiab=jDiEdaa@3966@     la retta y=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 da9iaaicdaaaa@38B4@  è asintoto orizzontale destro

lim x e x x 2 3 = H lim x e x 2x = H lim x e x 2 =+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci GGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcqGHsislcqGHEisP aeqaaOWaaSaaaeaacaWGLbWaaWbaaSqabeaacqGHsislcaWG4baaaa GcbaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiodaaaWa aCbiaeaacqGH9aqpaSqabeaacaWGibaaaOWaaCbeaeaaciGGSbGaai yAaiaac2gaaSqaaiaadIhacqGHsgIRcqGHsislcqGHEisPaeqaaOWa aSaaaeaacqGHsislcaWGLbWaaWbaaSqabeaacqGHsislcaWG4baaaa GcbaGaaGOmaiaadIhaaaWaaCbiaeaacqGH9aqpaSqabeaacaWGibaa aOWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcq GHsislcqGHEisPaeqaaOWaaSaaaeaacaWGLbWaaWbaaSqabeaacqGH sislcaWG4baaaaGcbaGaaGOmaaaacqGH9aqpcqGHRaWkcqGHEisPaa a@66F9@   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbyaqa aaaaaaaaWdbiab=jDiEdaa@3966@    non esistono asintoti orizzontali sinistri

lim x 3 e x x 2 3 =± MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci GGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcqGHsisldaGcaaqa aiaaiodaaWqabaWcdaahaaadbeqaaiabloHiTbaaaSqabaGcdaWcaa qaaiaadwgadaahaaWcbeqaaiabgkHiTiaadIhaaaaakeaacaWG4bWa aWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaG4maaaacqGH9aqpcqGHXc qScqGHEisPaaa@4A4A@      MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbyaqa aaaaaaaaWdbiab=jDiEdaa@3966@     la retta x= 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iabgkHiTmaakaaabaGaaG4maaWcbeaaaaa@39BE@  è asintoto verticale

lim x 3 e x x 2 3 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci GGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRdaGcaaqaaiaaioda aWqabaWcdaahaaadbeqaaiabloHiTbaaaSqabaGcdaWcaaqaaiaadw gadaahaaWcbeqaaiabgkHiTiaadIhaaaaakeaacaWG4bWaaWbaaSqa beaacaaIYaaaaOGaeyOeI0IaaG4maaaacqGH9aqpcqWItisBcqGHEi sPaaa@48A2@        MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbyaqa aaaaaaaaWdbiab=jDiEdaa@3966@     la retta x= 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9maakaaabaGaaG4maaWcbeaaaaa@38D1@  è asintoto verticale

Per trovare l’eventuale asintoto obliquo sinistro, calcoliamo:

m = lim x e x x 2 3 x = lim x e x x 3 3x = H lim x e x 3 x 2 3 = H lim x e x 6x = H lim x e x 6 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci GGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcqGHsislcqGHEisP aeqaaOWaaSaaaeaadaWcaaqaaiaadwgadaahaaWcbeqaaiabgkHiTi aadIhaaaaakeaacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0Ia aG4maaaaaeaacaWG4baaaiabg2da9maaxababaGaciiBaiaacMgaca GGTbaaleaacaWG4bGaeyOKH4QaeyOeI0IaeyOhIukabeaakmaalaaa baGaamyzamaaCaaaleqabaGaeyOeI0IaamiEaaaaaOqaaiaadIhada ahaaWcbeqaaiaaiodaaaGccqGHsislcaaIZaGaamiEaaaadaWfGaqa aiabg2da9aWcbeqaaiaadIeaaaGcdaWfqaqaaiGacYgacaGGPbGaai yBaaWcbaGaamiEaiabgkziUkabgkHiTiabg6HiLcqabaGcdaWcaaqa aiabgkHiTiaadwgadaahaaWcbeqaaiabgkHiTiaadIhaaaaakeaaca aIZaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiodaaaWa aCbiaeaacqGH9aqpaSqabeaacaWGibaaaOWaaCbeaeaaciGGSbGaai yAaiaac2gaaSqaaiaadIhacqGHsgIRcqGHsislcqGHEisPaeqaaOWa aSaaaeaacaWGLbWaaWbaaSqabeaacqGHsislcaWG4baaaaGcbaGaaG OnaiaadIhaaaWaaCbiaeaacqGH9aqpaSqabeaacaWGibaaaOWaaCbe aeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcqGHsislcq GHEisPaeqaaOWaaSaaaeaacqGHsislcaWGLbWaaWbaaSqabeaacqGH sislcaWG4baaaaGcbaGaaGOnaaaacqGH9aqpcqGHsislcqGHEisPaa a@8C0D@

Pertanto non esistono asintoti obliqui.

 

Monotonia. Punti di massimo e di minimo relativo.

 

f'(x)= e x ( x 2 3)2x e x ( x 2 3) 2 = e x ( x 2 +2x3) ( x 2 3) 2 = e x (x+3)(x1) ( x 2 3) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacE cacaGGOaGaamiEaiaacMcacqGH9aqpdaWcaaqaaiabgkHiTiaadwga daahaaWcbeqaaiabgkHiTiaadIhaaaGccaGGOaGaamiEamaaCaaale qabaGaaGOmaaaakiabgkHiTiaaiodacaGGPaGaeyOeI0IaaGOmaiaa dIhacaWGLbWaaWbaaSqabeaacqGHsislcaWG4baaaaGcbaGaaiikai aadIhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIZaGaaiykamaa CaaaleqabaGaaGOmaaaaaaGccqGH9aqpcqGHsisldaWcaaqaaiaadw gadaahaaWcbeqaaiabgkHiTiaadIhaaaGccaGGOaGaamiEamaaCaaa leqabaGaaGOmaaaakiabgUcaRiaaikdacaWG4bGaeyOeI0IaaG4mai aacMcaaeaacaGGOaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgkHi TiaaiodacaGGPaWaaWbaaSqabeaacaaIYaaaaaaakiabg2da9iabgk HiTmaalaaabaGaamyzamaaCaaaleqabaGaeyOeI0IaamiEaaaakiaa cIcacaWG4bGaey4kaSIaaG4maiaacMcacaGGOaGaamiEaiabgkHiTi aaigdacaGGPaaabaGaaiikaiaadIhadaahaaWcbeqaaiaaikdaaaGc cqGHsislcaaIZaGaaiykamaaCaaaleqabaGaaGOmaaaaaaaaaa@74D9@

Quindi:

f'(x)>0  3<x< 3    3 <x<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacE cacaGGOaGaamiEaiaacMcacqGH+aGpcaaIWaGaaeiiaiabgsDiBlaa bccacqGHsislcaaIZaGaaeipaiaadIhacaqG8aGaeyOeI0YaaOaaae aacaaIZaaaleqaaOGaaeiiaiabgIIiAlaabccacqGHsisldaGcaaqa aiaaiodaaSqabaGccqGH8aapcaWG4bGaeyipaWJaaGymaaaa@4DBF@

f'(x)=0    x=3  x=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacE cacaGGOaGaamiEaiaacMcacqGH9aqpcaaIWaGaaeiiaiaabccacqGH uhY2caqGGaGaaeiiaiaadIhacqGH9aqpcqGHsislcaaIZaGaaeiiai abgIIiAlaabccacaWG4bGaeyypa0JaaGymaaaa@49EB@

f'(x)<0     <x<3  1<x< 3    3 <x<+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacE cacaGGOaGaamiEaiaacMcacqGH8aapcaaIWaGaaeiiaiaabccacaqG GaGaeyi1HSTaaeiiaiaabccacqGHsislcqGHEisPcqGH8aapcaWG4b GaeyipaWJaeyOeI0IaaG4maiaabccacqGHOiI2caqGGaGaaeymaiaa bYdacaWG4bGaaeipamaakaaabaGaae4maaWcbeaakiaabccacqGHOi I2caqGGaWaaOaaaeaacaaIZaaaleqaaOGaeyipaWJaamiEaiabgYda 8iabgUcaRiabg6HiLcaa@5868@

 

Dal grafico relativo al segno della derivata prima risulta chiaro che:

 

 

 

 

 

f(x) è crescente in (3, 3 ) e in ( 3 ,1)   f(x)  decresce in (,3), (1, 3 ) e in ( 3 ,+) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGMb GaaiikaiaadIhacaGGPaGaaeiiaiaabIoacaqGGaGaae4yaiaabkha caqGLbGaae4CaiaabogacaqGLbGaaeOBaiaabshacaqGLbGaaeiiai aabMgacaqGUbGaaeiiaiaabIcacqGHsislcaaIZaGaaiilaiabgkHi TmaakaaabaGaaG4maaWcbeaakiaabMcacaqGGaGaaeyzaiaabccaca qGPbGaaeOBaiaabccacaGGOaGaeyOeI0YaaOaaaeaacaaIZaaaleqa aOGaaiilaiaaigdacaGGPaGaaeiiaiaabccaaeaacaWGMbGaaiikai aadIhacaGGPaGaaeiiaiaabccacaqGKbGaaeyzaiaabogacaqGYbGa aeyzaiaabohacaqGJbGaaeyzaiaabccacaqGPbGaaeOBaiaabccaca GGOaGaeyOeI0IaeyOhIuQaaiilaiabgkHiTiaaiodacaGGPaGaaiil aiaabccacaqGOaGaaGymaiaacYcadaGcaaqaaiaaiodaaSqabaGcca GGPaGaaeiiaiaabwgacaqGGaGaaeyAaiaab6gacaqGGaGaaiikamaa kaaabaGaaG4maaWcbeaakiaacYcacqGHRaWkcqGHEisPcaGGPaaaaa a@7B65@

Altrettanto chiaro risulta che

( 3; e 3 6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq GHsislcaaIZaGaai4oamaalaaabaGaamyzamaaCaaaleqabaGaaG4m aaaaaOqaaiaaiAdaaaaacaGLOaGaayzkaaaaaa@3C96@  è punto di minimo relativo;

( 1; 1 2e ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIXaGaai4oaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdacaWGLbaa aaGaayjkaiaawMcaaaaa@3C57@  è punto di massimo relativo.

 

Grafico